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Bringing Satellite-Based Air Quality Estimates Down to Earth†

By Meredith Fowlie, Edward Rubin, and Reed Walker*

Particulate matter pollution poses serious 
health risks—particularly for children, the 
elderly, and sensitive populations. In the United 
States, air pollution regulations have increas-
ingly focused on smaller particles, such as those 
less than 2.5 micrometers (PM    2.5   ). These regu-
lations are enforced using ambient air pollution 
measurements, collected from the EPA’s air 
quality monitoring network.

The network of regulatory-grade monitors 
is spatially sparse; more than 80 percent of US 
counties do not contain a PM    2.5    monitor. Coarse 
measurements of air pollution concentrations 
can lead to significant gaps in our understand-
ing of the burden of exposure for certain areas. 
These gaps have potentially important implica-
tions for the design and implementation of exist-
ing air quality regulations.

Recent advances in satellite technology, 
combined with advances in prediction tech-
niques—e.g., machine learning—may relax 
some of these information constraints. For 
instance, a growing suite of satellite observa-
tions of aerosol optical depth (AOD) makes it 
possible to estimate ground-level concentrations 
of PM    2.5    at fine spatial resolutions ( < 1km). 
Social scientists are increasingly using these sat-
ellite-based estimates of PM    2.5    concentrations 
to analyze the health and economic impacts of 
ambient pollution exposure (e.g., Sullivan and 
Krupnick 2018, Voorheis 2016, and Di et al. 
2017).
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This paper uses two state-of-the-art, satel-
lite-based PM    2.5    data products (Di et al. 2016, 
Van Donkelaar et al. 2019) to assess the extent 
to which the EPA’s existing, monitor-based mea-
surements over- or under-estimate true exposure 
to PM    2.5    pollution. We show that regulato-
ry-grade monitor measurements fail to capture a 
significant amount of spatial variation in the sat-
ellite-based estimates. Treating satellite-based 
estimates as truth would imply a substantial 
number of “policy errors” by the EPA—over-
regulating certain areas that are already in com-
pliance with the Clean Air Act (CAA) National 
Ambient Air Quality Standards (NAAQS) and 
under-regulating other areas that, according to 
the satellite-based estimates, are in violation of 
the standards. Somewhat counterintuitively, we 
show that recalibrating existing policies to cap-
ture more spatially resolved measures of pollu-
tion exposure need not improve health outcomes 
overall.

We also highlight the importance of account-
ing for prediction error in satellite-based esti-
mates. These highly spatially resolved datasets 
offer the potential for new and important 
insights into the distribution and impacts of air 
quality. However, these data are estimates of 
the true PM    2.5    concentration at a location and 
contain prediction or forecast errors. The fore-
cast errors associated with these satellite-based 
data products have largely been ignored by 
the social-science research community, and 
many of our original conclusions in regards 
to “policy errors” become substantially more 
uncertain.

I. Pollution-Concentration Measurement and 
Estimation

The US EPA directly measures surface PM    2.5    
concentrations using in situ, filter-based moni-
tors. Together these monitors form a precise but 
spatially sparse network of PM    2.5    measurements 
that is fairly expensive to maintain. Recent work 
in atmospheric, computer, and environmental 

https://doi.org/10.1257/pandp.20191064
mailto:fowlie@berkeley.edu
mailto:fowlie@berkeley.edu
mailto:edwardr@uoregon.edu
mailto:rwalker@berkeley.edu
mailto:rwalker@berkeley.edu
https://doi.org/10.1257/pandp.20191064


MAY 2019284 AEA PAPERS AND PROCEEDINGS

sciences offers the potential to extend the spatial 
coverage of PM    2.5    measurements.

By combining satellite-based measures of 
AOD with chemical-transport modeling and 
land characteristics, researchers are able to esti-
mate ground-level concentrations of PM    2.5    at 
high levels of spatial disaggregation. Further, the 
in situ EPA monitors provide training data for 
statistical models—mitigating bias and increas-
ing precision in these satellite-based estimates.

We obtained two data products that estimate 
annual PM    2.5    concentrations in the continental 
United States at a high spatial resolution. First, 
Di et al. (2016) uses a neural network to pre-
dict daily PM    2.5    concentrations at nationwide 
1 km  ×  1 km grid cells over the period 2000 to 
2015. Second, Van Donkelaar et al. (2019) com-
bines satellite remote-sensing data with chem-
ical-transport modeling and geographically 
weighted regression to predict annual PM    2.5    
concentrations at 1-kilometer resolution 1998–
2016. We spatially intersect both sets of data 
with US Census block-group (CBG) bound-
ary files from the year 2000. Online Appendix 
Figures 1(a) and 1(b) plot estimated PM    2.5    con-
centrations for 2005 by Di et al. (2016) and Van 
Donkelaar et al. (2019), respectively.

II. Policy Context

The United States’ Clean Air Act National 
Ambient Air Quality Standards (NAAQS) 
specify maximum allowable concentrations for 
common air pollutants (e.g., PM    2.5    and lead). 
Compliance (attainment) within NAAQS is 
determined using monitor-based design  values. 
For PM    2.5   , each EPA monitor is used to con-
struct two design values: a three-year annual 
average concentration and a three-year average 
of the annual ninety-eighth percentile of 24-hour 
concentrations. If either design value exceeds its 
respective NAAQS PM    2.5    threshold, the EPA 
classifies the monitor’s jurisdiction (usually its 
county) as non-attainment. Areas that fail to 
meet these standards must take steps to improve 
air quality (e.g., mandatory pollution abatement 
technologies for air pollution point sources).

Our analysis focuses on the 1997 
PM    2.5    NAAQS, which set an annual average 
standard of 15  μg/ m   3   and a 24-hour standard of 
65  μg/ m   3  . Following court challenges, these 
1997 standards were enacted in 2005. Virtually 
all non-attainment designations from the 1997 

standard occurred due to violations of the annual 
(versus 24 hour) standard.1 We use the satel-
lite-based estimates to construct design values 
for each CBG, and we compare these design 
values to the de jure, county-level design values 
(i.e., design values based on the maximum EPA 
monitor readings within the county).

We first use EPA AQS monitors to construct 
the three-year annual average design val-
ues for all 685 counties that had monitors in 
2005. Counties that do not have a monitor are 
assumed to be in attainment. Next, we use the 
satellite-based estimates constructed by Di et 
al. (2016) and Van Donkelaar et al. (2019) to 
construct the three-year annual average design 
values for every CBG in 2005. Figure  1 sum-
marizes the relationship between the satel-
lite-based design values and the corresponding 
monitor-based design values. Figure 1, panel A 
explores these relationships using the Di et al. 
(2016) data, whereas Figure  1, panel B plots 
the monitor versus Van Donkelaar et al. (2019) 
data. The distribution to the left of each figure 
shows the extent of variation in satellite-based 
estimates in counties with no EPA monitor.

These figures illustrate the striking variation 
in satellite-based measurements for counties 
that share the same monitor-based, countywide 
design value. Recall that the monitor-based, 
countywide design value is the only piece of 
information that the EPA currently uses to reg-
ulate counties under NAAQS. If we assume 
that these satellite-based estimates are precise 
and unbiased, these figures suggest that the 
 county-level, monitor-based design values are a 
very crude proxy for true pollution concentra-
tions in many locations.

However, some of the observed variation in 
satellite-based estimates likely reflects predic-
tion errors, rather than true variation in under-
lying PM    2.5    concentrations. Ideally, our analysis 
would account for both bias and uncertainty in 
these estimates. We explore the extent of pre-
diction errors by focusing on the 911 CBGs 
equipped with an EPA monitor, comparing the 
satellite-based estimates to the EPA monitor 
readings for the same area. Online Appendix 

1 In contrast, violations of the current standards (enacted 
in 2009) were mostly triggered by violations of the 24-hour 
standard. We cannot construct these design values using 
annual satellite-based estimates, so we focus on the earlier 
standard.
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Figures 2(a) and 2(b) provide a sense of the 
range of satellite-based estimates we observe 
across CBGs with similar monitor readings. The 
range of these estimates, particularly at higher 
measured PM    2.5    concentrations, is significant.

Regulatory-grade monitors measure pollution 
concentrations directly and with high precision 
at a particular location. If we assume that spa-
tial variation within a CBG is minimal, we can 
interpret the difference between monitor-based 
design values and the satellite-based design val-
ues as prediction errors for the 911 CBGs that 
have a monitor. However, there are over 215,000 

CBGs without a monitor, so we try to forecast 
the prediction errors for these CBGs “out of 
sample.” We begin by regressing the “in-sample” 
prediction errors on a set of seven CBG-level 
observable variables.2 We use this regression 
model to predict errors in the satellite-based 
predictions—for both in-sample (the 911 CBGs 
that contain a monitor) and out-of-sample pre-
dictions (the more than 215,000 CBGs without 
a monitor).We use the standard error from this 
regression model to create a 95 percent predic-
tion interval for each CBG pollution estimate.3 
We will use these prediction intervals below 
to better understand the extent to which our 
conclusions are sensitive to this measure of 
 satellite-based estimation uncertainty.

III. Non-Attainment Designations, Revisited

We distinguish between two types of attain-
ment designation “errors.” A “type 1” error 
(i.e., false positive) occurs if the three-year 
annual average of satellite-based estimates of 
PM    2.5    concentrations in a CBG falls below the 
NAAQS standard of 15  μg/ m   3  , but the associ-
ated county-level, EPA monitor-based design 
value exceeds this threshold. Conversely, a 
“type 2” error (i.e., false negative) occurs if the 
estimated CBG pollution concentration exceeds 
the regulatory standard, whereas the associated 
county-level, monitor-based design value does 
not.

A. Policy “Errors”

Panel A of Table  1 summarizes the results 
of this classification exercise using the Di et al. 
(2016) satellite data, whereas panel C presents 
results using Van Donkelaar et al. (2019) PM    2.5    
estimates. We first calculate designation errors 
assuming that the satellite-based estimates pro-
vide an unbiased and precise estimate of true 
PM    2.5    concentrations. We then  incorporate 

2 The CBG-level explanatory variables in this regression 
are: the monitor-based PM    2.5    estimate, total population, the 
share of the population that is white, the share of the popu-
lation that is rural, minimum and maximum elevation, and 
land area.

3 For this simple thought exercise, we are assuming that 
the regression error is independent of the explanatory vari-
ables normally distributed, with zero mean, and constant 
variance.

Figure 1. Comparing PM    2.5    Measurements: Monitor-
Based versus Satellite-Based Estimates

Notes: These figures plot the relationship between satel-
lite-based design values and monitor-based design values in 
2005. An observation is a census block group. The graphs 
show the variation in satellite-based design values for each 
level of monitor design values. The distribution to the left of 
each figure shows the variation in satellite-based estimates in 
counties with no EPA monitor.

Source: Di et al. (2016), Van Donkelaar (2019), EPA-AQS
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uncertainty stemming from prediction errors, 
using the lower and upper bounds of the 95 
percent prediction interval (for the predicted 
error) to compute designation errors. Numbers 
in parentheses report results using the lower and 
upper estimates, respectively.

Panels A and C in Table 1 show how popu-
lations are distributed across correctly classi-
fied and misclassified attainment designations, 
respectively. Column 1 shows that a majority of 
the population live in areas that have been cor-
rectly designated as in attainment based upon 
year-2005 design values (satellite-based point 
estimates imply around 78 percent fall into this 
category). Column 4 shows that the share of the 
population living in properly designated non-at-
tainment areas is much smaller. We find type 1 
errors (column 2) are much more prevalent than 
type 2 errors (column 3). Note, 11–14 percent of 
the population live in areas that are designated as 

non-attainment using the de jure monitor mea-
surement but are associated with satellite-based 
estimates of PM    2.5    concentrations that fall below 
the NAAQS limits. Only 1–2 percent of the pop-
ulation live in areas that appear to exceed the 
NAAQS threshold (using either satellite-based 
data product), but are classified as “attainment” 
under the de jure, monitor-based NAAQS pol-
icy. Estimates in parentheses show how the rel-
ative importance of type 1 and type 2 errors is 
sensitive to the prediction interval bounds we 
use. Intuitively, when we use the lower bound of 
the 95 percent prediction interval for the satellite 
data, we are more likely to see CBGs misclassi-
fied as non-attainment based on de jure monitor 
readings when “true” pollution concentrations, 
as measured by satellites, meet the standard (i.e., 
type 1 errors). When we use the upper bound 
of the 95 percent prediction intervals from the 
satellite data, we see more CBGs designated as 

Table 1—Comparing NAAQS Designation: Monitors and Satellite-Based Estimates

Satellite attain. Satellite non-attain.

Monitor designation: Attainment Non-Attainment Attainment Non-Attainment
(1) (2) (3) (4)

Panel A. Population summary (Di et al. 2016)
Population (millions) 234.3 33.1 5.7 29.9

(239.7, 111.7) (29.2, 0.2) (0.3, 128.3) (33.8, 62.9)
Population share 77.3% 10.9% 1.9% 9.9%

(79.1%, 36.9%) (9.6%, 0.1%) (0.1%, 42.3%) (11.2%, 20.8%)

Panel B. Mortality impacts (Di et al. 2016)
Avoided deaths 4,640 694 116 614
 Lower estimate (4,748, 2,201) (651, 5) (8, 2,556) (657, 1,303)
Avoided deaths 13,489 1,982 335 1,726
 Higher estimate (13,802, 6,448) (1,868, 14) (22, 7,376) (1,840, 3,694)

Panel C. Population summary (Van Donkelaar et al. 2019)
Population (millions) 238.8 42.3 1.2 20.8

(240.0, 106.2) (43.8, 0.2) (0.0, 133.8) (19.3, 62.8)
Population share 78.8% 14.0% 0.4% 6.9%

(79.2%, 35.0%) (14.5%, 0.1%) (0.0%, 44.2%) (6.4%, 20.7%)

Panel D. Mortality impacts (Van Donkelaar et al. 2019)
Avoided deaths 4,733 883 23 425
 Lower estimate (4,757, 2,080) (949, 5) (0, 2,676) (359, 1,302)
Avoided deaths 13,758 2,532 66 1,175
 Higher estimate (13,824, 6,097) (2,721, 15) (0, 7,727) (987, 3,693)

Notes: These estimates come from comparing satellite-based estimates to EPA AQS monitor data. We spatially intersect the Di 
et al. (2016) and Van Donkelaar et al. (2019) estimates with census block groups to provide the relevant demographic charac-
teristics and baseline mortality rates. The column NAAQS classifications are based on the 2005 three-year annual design val-
ues, calculated at (i) the county level for EPA monitors or (ii) at the census block-group level for the satellite-based estimates. 
Avoided death estimates come from two concentration-response functions: lower estimate (Krewski et al. 2009) and higher 
estimate (Lepeule et al. 2012). Numbers in parentheses describe how the point estimate changes when we use the lower (or 
upper) bound of the 95 percent prediction intervals for the error in the PM2.5 estimate.
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in attainment based on monitor readings when 
satellite-based estimates exceed the NAAQS 
threshold (type 2 errors).

B. Health Implications

The vast majority of the damages associ-
ated with PM    2.5    exposure are mortality related. 
Panels B and D of Table 1 use the satellite-based 
estimates of PM    2.5    concentrations to estimate 
the likely health implications of the classifica-
tion errors we have identified.

To assess the mortality impacts of our findings, 
we adopt an approach similar to the regulatory 
impact analyses conducted by the EPA, which 
is based on estimated concentration-response 
(or “hazard”) functions. These functions relate 
PM    2.5    exposure to mortality risk. Importantly, 
the scientific evidence on health impacts has 
yet to identify a safe threshold for PM    2.5    expo-
sure.4 In contrast, the threshold-based design 
of NAAQS is most consistent with marginal 
damages that are low or zero below the thresh-
old and high above. This mismatch between the 
structure of the NAAQS and the underlying con-
centration-response relationship has important 
implications when assessing the health impli-
cations of designation errors. In particular, it 
implies that type 1 errors (i.e., overregulation) 
generate potentially significant benefits in the 
form of reduced mortality.

Panels B and D of Table  1 summarize esti-
mated annual mortality benefits associated with 
a 1  μg/ m   3   reduction in PM    2.5    concentrations. 
“Lower” estimates of deaths avoided are based 
on Krewski et al. (2009). “Higher” estimates 
are based on Lepeule et al. (2012). See online 
Appendix A1 for more details. We speculate 
that moving a county into non-attainment would 
induce a reduction in annual average concentra-
tions of at least 1  μg/ m   3  . To put this assumption 
in perspective, Sullivan and Krupnick (2018) 
estimates that a non-attainment classification 
under the 2012 standard reduced pollution con-
centrations by more than 2  μg/ m   3  .

Satellite-based point estimates imply that 
the mortality implications of type 1 errors (i.e., 
reduction in mortality from regulating areas 

4 In fact, there is some evidence that the mortality-related 
benefits from incremental reductions in PM    2.5    concentra-
tions may be higher at lower concentrations (EPA 2018).

already in compliance) may be much more con-
sequential than the foregone mortality benefits 
associated with type 2 errors (i.e., the mortality 
increase associated with failing to regulate areas 
that are out of compliance). Panel B of Table 1 
suggests that when using the higher hazard 
ratio parameters of Lepeule et al. (2012), 335 
deaths resulted from a failure to designate areas 
exceeding the NAAQS threshold as non-attain-
ment, whereas 1,982 deaths were avoided as a 
consequence of designating areas that met the 
standard as non-attainment. The estimates from 
panel D are qualitatively similar. However, these 
results are sensitive to which prediction-interval 
bounds we use. In other words, our estimated 
prediction errors suggest significant uncertainty 
underlies these estimated mortality impacts of 
type 1 and type 2 errors.

IV. Conclusion

Newly available, spatially resolved pollution 
data present a host of new opportunities—for 
both research and policy. We use state-of-the-art 
satellite estimates to assess the extent to which 
the limited network of EPA monitors leads to 
over- and/or under-detection of violations of 
PM    2.5    standards.

We arrive at the surprising conclusion that 
using more spatially disaggregated measures 
of PM    2.5    concentrations to determine NAAQS 
attainment need not be welfare improving, rel-
ative to the current status quo. The reason is 
twofold. First, we find that a significant share 
of the population is living in areas where satel-
lite-based estimates of pollution concentrations 
fall below the NAAQS threshold, but EPA mon-
itor-based design values exceed the threshold 
(i.e., these populations received health benefits 
from “overregulation”). In contrast, the share of 
the population living in areas where the reverse 
appears to be true is small. Second, the design of 
the NAAQS standards poorly approximate the 
underlying damage function. This implies that 
marginal benefits from pollution reductions are 
significant in areas that meet NAAQS standards.

Finally, it is important to recognize that satel-
lite-based estimates of pollution concentrations 
are not direct measures. Prediction error appears 
to be economically significant, and the error 
structure is poorly understood. In general, satel-
lite estimates appear to be biased down at higher 
PM    2.5    concentrations. We conclude that further 
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work exploring the precision, bias, and limits 
of these estimates remains important to under-
standing the health and policy implications of 
spatial heterogeneity in pollution exposure.
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